Seoul 120-750, Korea wan1818@paran.com; jongskim@korea.ac.kr

Received July 1, 2008

Chromofluorescent Indicator for Intracellular Zn2+**/Hg2**⁺ **Dynamic Exchange**

Jeong Won Lee,† Hyo Sung Jung,† Pil Seung Kwon,‡ Jong Wan Kim,*,‡ Richard A. Bartsch,§ Youngmee Kim,[|] **Sung-Jin Kim,**[|] **and Jong Seung Kim*,†**

*Department of Chemistry, Korea Uni*V*ersity, Seoul 136-701, Korea, Department of* Laboratory Medicine, Dankook University Hospital, 330-715, Cheonan, Department of *Chemistry and Biochemistry, Texas Tech Uni*V*ersity, Lubbock, Texas 79409, and Department of Chemistry and Division of Nano Sciences, Ewha Womans University,*

LETTERS 2008 Vol. 10, No. 17 ³⁸⁰¹-**³⁸⁰⁴**

ORGANIC

ABSTRACT

The fluorescence of NABQ increases remarkably in the presence of Zn2⁺ **and is quenched by Hg2**+**. As shown by confocal imaging, NABQ**-**Zn2**⁺ **can penetrate cells, where the bound Zn2**⁺ **is exchanged for Hg2**+**. This results in the concomitant export of Hg2**⁺ **from the cells, showing that NABQ can act as a Zn2**⁺ **carrier and as a Hg2**⁺ **extracting agent in living cells.**

Mercury is extremely toxic, and the widespread contamination of the environment with this mineral has a variety of natural and anthropogenic sources.¹ The accumulation of mercury to high concentrations in the liver, kidney, and spleen leads to DNA damage, mitosis impairment, and nervous system defects.2 Intense attention has been focused on the development of sophisticated techniques for the determination and removal of Hg^{2+} from living systems.³

Zinc is an important mineral for protein synthesis and for the regulation of cell production in the immune system.⁴ Zinc deficiency causes unbalanced metabolism, which in turn can Korea University. The university of the University of the University of the University of the University. The University of the University. The Univer

Dankook University Hospital.

[§] Texas Tech University.

Ewha Womans University.

^{(1) (}a) Renzoni, A.; Zino, F.; Franchi, E. *En*V*iron. Res.* **¹⁹⁹⁸**, *⁷⁷*, 68. (b) Benoit, J. M.; Fitzgerald, W. F.; Damman, A. W. *Environ. Res.* 1998, *78*, 118.

^{(2) (}a) Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D. *En*V*iron. Toxicol.* **²⁰⁰³**, *¹⁸*, 149. (b) Farina, M.; Soares, F. A.; Feoli, A.; Roehring, C.; Brusque, A. M.; Rotta, L.; Perry, M. L.; Souza, D. O.; Rocha, J. B. T. *Nutrition* **2003**, *19*, 531.

^{(3) (}a) Ko, S.-K.; Yang, Y.-K.; Tae, J.; Shin, I. *J. Am. Chem. Soc.* **2006**, *128*, 14150. (b) Yang, H.; Zhou, Z.; Huang, K.; Yu, M.; Li, F.; Yi, T.; Huang, C. *Org. Lett.* **2007**, *9*, 4729. (c) Ledwidge, R.; Patel, B.; Dong, A.; Fiedler, D.; Falkowski, M.; Zelikova, J.; Summers, A. O.; Pai, E. F.; Miller, S. M. *Biochemistry* **2005**, *44*, 11402.

^{(4) (}a) Kaya, S.; Kececi, T.; Haliloglu, S. *Res. Vet. Sci.* **2001**, *71*, 135. (b) Scrimgeoura, A. G.; Stahl, C. H.; McClung, J. P.; Marchitelli, L. J.; Young, A. J. *J. Nutri. Biol.* **2007**, *18*, 813. (c) El Hendy, H. A.; Yousef, M. I.; Abo El-Naga, N. I. *Toxicology* **2001**, *167*, 163.

tion problems, low blood sugar, poor bone growth, brain disorders, and high blood cholesterol, etc.⁵ Another important additive effect of zinc in our bodies is illustrated by zinc-binding proteins, such as metallothionein, which function in lead detoxification by sequestering lead within the enterocyte.⁶

Fluorescence monitoring is receiving great interest because of its simplicity, selectivity, and sensitivity toward specific metal cations in living organisms.⁷ As one of several fluorescence sensing mechanisms, ICT (intramolecular charge transfer) has been widely developed for ion sensing, molecular switching, and fluorescent labeling because ICT-based molecules have a long-wavelength emission which is very sensitive to structural changes.⁸ We have developed a variety of ICT-related fluorescence materials that are capable of selectively sensing specific cations or anions in aqueous media.9 Especially, we have sought to develop molecular systems that are capable of supplying beneficial minerals to animals while eliminating toxic metal ions. This led us to the development of a new and promising ICT-based molecule, 5-(4-nitrobenzene diazo)-8-benzenesulfonamidoquinaldine (NABQ), which can be used to simultaneously supply Zn^{2+} and remove Hg²⁺ from living cells with high selectivity (see the graphical abstract). The dual sensitivity scaffolds (nitroazobenzene-*chromophore* and benzenesulfonamido quinaldine-*fluorophore*) of NABQ provide explicit information by color and fluorescence changes upon metal cation complexation, which can be applied to biological systems, such as living cells.

NABQ was synthesized from 8-nitroquinaldine via a threestep procedure (reduction, sulfonamidation, and diazotization) from 8-nitroquinaldine in an ca. 33% overall yield (Scheme S1). The absorption spectrum of free NABQ gives a characteristic ICT band at 400 nm (Figure S1).

When Zn^{2+} was gradually added, the λ_{max} bathochromically shifted by 36 nm to 436 nm, and the solution color changed from yellow to red (Figures S2 and S22). Figure 1a records the fluorescence changes of NABQ (10 *µ*M) upon addition of chloride salts of various metal cations. Even with highly concentrated Na⁺, K⁺, Ca²⁺, and Mg²⁺ (~5.0 mM) under physiological conditions,¹⁰ we found no fluorescence

(6) (a) Salgueiro, M. J.; Zubillaga, M.; Lysionek, A. E.; Caro, R. A.; Weill, R.; Boccio, J. R. *Nutrition* **2002**, *18*, 510. (b) Yu, Z.-P.; Le, G.-W.; Shi, Y.-H. *Clin. Exp. Pharmacol. Physiol.* **2005**, 32 , 273. (c) Ferencík, M.; Ebringer, L. *Folia. Microbiol. (Praha)* **2003**, *48*, 417.

(7) (a) Taki, M.; Wolford, J. L.; O'Halloran, T. V. *J. Am. Chem. Soc.* **2004**, *126*, 712. (b) Wang, K.; Seiler, K.; Rusterholz, B.; Simon, W. *Analyst* **1992**, *117*, 57. (c) Oehme, I.; Wolfbeis, O. S. *Microchim. Acta* **1997**, *126*, 177. (d) Lindner, E.; Horváth, M; Tóth, K.; Pungor, E.; Bitter, I.; Agai, B.; Toke, L *Anal. Lett.* **1992**, *25* (3), 453. (e) Johnson, R. D.; Bachas, L. G. *Anal. Bioanal. Chem.* **2003**, *376*, 328. (f) Steinberg, I. M.; Lobnik, A.; Wolfbeis, O. S. *Sens. Actuators, B* **2003**, 230.

(8) (a) Wang, Z.; Zheng, G.; Lu, P. *Org. Lett.* **2005**, *7*, 3669. (b) Coskun, A.; Deniz, E.; Akkaya, E. U. *Org. Lett.* **2005**, *7*, 5187. (c) Coskun, A.; Akkaya, E. U. *J. Am. Chem. Soc.* **2005**, *127*, 10464. (d) Chen, C.-T.; Huang, W.-P. *J. Am. Chem. Soc.* **2002**, *124*, 6246.

Figure 1. Fluorescence responses of NABQ (10 μ M) in CH₃CN/ $H₂O$ solution (1/1, v/v) at pH 7.4 (0.02 M HEPES) in the presence of (a) chloride salts of various metal cations $(L⁺, Rb⁺, Cs⁺, Sr²⁺,$ Ba^{2+} , Cu^{2+} , Cd^{2+} , Hg^{2+} , and Zn^{2+} (100 μ M, respectively) and Na⁺, K^+ , Ca^{2+} , and Mg^{2+} (5 mM, respectively)) and (b) increasing concentrations of Zn^{2+} (0.2, 0.4, 0.6, 0.8, 1, 2, 3, 4, 5, 6, 7, 8, and 10 *µ*M). Excitation at 365 nm. Inset: fluorescence intensity of NABQ at 513 nm vs equiv of Zn^{2+} .

changes. However, Zn^{2+} led to an 11-fold increase in the fluorescence at 513 nm. The inset of Figure 1b shows that addition of only 0.2 equiv of Zn^{2+} increases the fluorescence by 90%, and the fluorescence reaches a plateau at 0.5 equiv of Zn^{2+} , presumably due to the CHEF effect.¹¹ This demonstraes that NABQ is a very sensitive and selective Zn^{2+} indicator, as well as a promising tool for the quantitative analysis of Zn^{2+} .

Job's plot analysis gave a maximum at 0.33 mol fraction of Zn^{2+} (Figure S8) indicating the formation of a 2:1 complex between NABQ and Zn^{2+} . FAB-MS (Figure S27) with m/z $= 958$ (2NABQ + Zn^{2+}) additionally provides strong evidence for a 2:1 stoichiometry. O'Halloran et al. reported a crystal structure for a quinoline derivative similar to ours in which Zn^{2+} is coordinated to the sulfonamide unit as well as to the quinoline nitrogen in a 2:1 complexation mode.¹¹

On the other hand, when Hg^{2+} was added to a solution of NABQ, λ_{max} in the UV spectrum was red-shifted by 44 nm to 444 nm. The fluorescence emission of NABQ was quenched markedly by Hg^{2+} (Figure 1a) attributable to Hg^{2+} acting as an inherent fluorescence quenching ion via enhanced spin-orbit coupling. 12

Figure S23 shows that NABQ could selectively detect Zn^{2+} among the tested metal ions except for Hg^{2+} . When 1 equiv

(12) McClure, D. S. *J. Chem. Phys.* **1952**, *20*, 682.

^{(5) (}a) Rostan, E. F.; DeBuys, H. V.; Madey, D. L.; Pinnell, S. R. *Int. J. Dermatol.* **2002**, *41*, *606.* (b) Szitányi, Z.; Nemes, C.; Rozlosnik, N. *Cent. Eur. J. Occup. Environ. Med.* **1998**, *4*, 51.

^{(9) (}a) Lee, M. H.; Cho, B.-K.; Yoon, J.; Kim, J. S. *Org. Lett.* **2007**, *9*, 4515. (b) Wu, J.-S.; Hwang, I.-C.; Kim, K. S.; Kim, J. S. *Org. Lett.* **2007**, *9*, 907. (c) Lee, J. W.; Park, S. Y.; Cho, B.-K.; Kim, J. S. *Tetrahedron Lett.* **²⁰⁰⁷**, *⁴⁸*, 2541. (d) Kim, J. S.; Quang, D. T. *Chem. Re*V*.* **²⁰⁰⁷**, *¹⁰⁷*, 3780.

⁽¹⁰⁾ Rae, T. D.; Schmidt, P. J.; Pufahl, R. A.; Culotta, V. C.; O'Halloran, T. V. *Science* **1999**, *284*, 805.

^{(11) (}a) Nasir, M. S.; Fahrni, C. J.; Suhy, D. A.; Kolodsick, K. J.; Singer,

C. P.; O'Halloran, T. V. *J. Bio;. Inorg. Chem.* **1999**, *4*, 775. (b) Fahrni,

C. J.; O'Halloran, T. V. *J. Am. Chem. Soc.* **1999**, *121*, 11448.

of Zn^{2+} was added to a solution of the NABQ-Hg²⁺ complex, no restoration of fluorescence emission was observed (Figure S4). In reverse order experiments, introduction of other cations into a solution of NABQ-Zn²⁺ did not result in fluorescence quenching (Figure S24). Thus, only the addition of Hg^{2+} to the solution of NABQ-Zn²⁺ gave fluorescence quenching. Also, Figure S25 illustrates that when Hg^{2+} was added to a solution of NABQ-Zn²⁺ containing various metal ions fluorescence quenching was observed. This is consistent with a greater binding affinity of NABQ for Hg^{2+} than Zn^{2+} .

In titration experiments with Hg^{2+} , we found that a solution of NABQ $-Zn^{2+}$ exhibits more pronounced quenching than that of a solution of free NABQ (Figure 2b). Thus, the

Figure 2. Fluorescence changes of $2NABQ-Zn^{2+}$ (5.0 μ M) in $CH₃CN/H₂O$ solution (1/1, v/v) at pH 7.4 (0.02 M HEPES) upon addition of (a) various concentrations of HgCl₂ (0-10 μ M) with excitation at 365 nm. (b) Fluorescence intensity decrease (I_0/I) at 510 nm of $2NABQ-Zn^{2+}$ in the presence of increasing concentrations of $Hg^{2+}(-\blacksquare-)$ and NABQ alone in the presence of increasing concentrations of Hg²⁺ ($-\triangle$ -).

 $NABO-Zn^{2+}$ complex displays greater selectivity and sensitivity for Hg^{2+} than does free NABQ, suggesting that it could be employed as a Hg^{2+} indicator. NABQ-Zn²⁺ is found to have a detection limit of 5.62×10^{-8} M (Figure S20) which is sufficient for Hg^{2+} analysis in the case of mercury poisoning symptoms in which mercury levels exceed 1.0 μ M in blood and 3.0 μ M in urine.¹³

To gain insight into the binding mode of $NABQ-Hg^{2+}$, we obtained a single crystal by mixing equivalent amounts of NABQ $-Zn^{2+}$ and Hg(NO₃)₂ in MeCN followed by slow *n*-hexane vapor diffusion. The crystal structure shows a coordinative interaction between NABQ and Hg2⁺ with a 1:1 stoichiometry (Figure 3). The Hg^{2+} binds to the quinaldine and sulfonamide nitrogens and to the nitrate. Job's plot analysis shows that $NABQ-Hg^{2+}$ is formed with a 1:1 stoichiometry (Figure S9). The FAB-MS (Figure S28) with $m/z = 748$ (NABQ + Hg²⁺ + ClO₄⁻) provides additional
evidence of a 1:1 stoichiometry evidence of a 1:1 stoichiometry.

Scheme 1 summarizes the binding mechanism of NABQ with Zn^{2+} and Hg²⁺ based on fluorescence on-off switching. NABQ exhibits a weak fluorescence but emits strong fluorescence upon Zn^{2+} complexation.¹⁴ Regarding the complexation mode of NABQ $-Zn^{2+}$, the metal ion is believed to coordinate with the nitrogens of the sulfonamide unit and the heterocyclic ring in a 2:1 complexation mode

Figure 3. Solid-state structure of $NABQ-Hg^{2+} (NO_3^-)$ with displacement atomic ellipsoids which are drawn at a 50% probdisplacement atomic ellipsoids, which are drawn at a 50% probability level.

Scheme 1. Complexation Modes of NABQ with Zn^{2+} and Hg^{2+}

analogous to that reported by O'Halloran et al. for a related system. Thus we proposed that Hg^{2+} binding induces Zn^{2+} release from the NABQ $-Zn^{2+}$ complex and the formation of a new complex between Hg^{2+} and NABQ that lacks fluorescence.

Selective monitoring of metal ions in living cells has considerable importance for biological applications. To determine if NABQ could be used in this manner in living cells, kidney cells of monkey (LLC-MK2) were incubated with NABQ (50 μ M) in D-MEM (Dulbecco's Modified Eagle's Medium), 15 in which chloride mineral salt such as $CaCl₂$, MgCl₂, KCl, and NaCl, etc. are abundant. Then, its fluorescence changes (Figure S33) were observed by confocal laser microscopy. The cells were incubated with NABQ in the growth medium for 5 min at 37 \degree C, and the free NABQ

^{(13) (}a) Liu, L. X.; Weller, P. F. In *Harrison's Principles of Internal Medicine*; Fauci, A. S., et al., Eds.; McGraw-Hill: New York, 1997. (b) Food and Drug Administration. Office of Inquiry and Consumer Information. 5600 Fisher Lane, Room 12-A-40, Rockville, MD 20857 (301) 827-4420. http://www.fda.gov/fdahomepage.html. (c) National Institutes of Health. National Institute of Environmental Health Sciences Clearinghouse. EnviroHealth, 2605 Meridian Parkway, Suite 115, Durham NC 27713. (919) ³⁶¹-9408.

displayed a weak fluorescent image (Figure S33b). Upon loading with $ZnCl₂$ (50 μ M, only 1 equiv) under the same conditions, a significant increase in the fluorescence of the intracellular area (Figure S33c) was observed, clearly demonstrating that NABQ can be used for Zn^{2+} sensing in living cells.

Interestingly, the exchange of Hg^{2+} for Zn^{2+} in NABQ- Zn^{2+} complexes could also be detected in LLC-MK2 cells (Figure 4). The fluorescence of NABQ $-Zn^{2+}$ (Figure 4b),

Figure 4. Confocal fluorescence images of Zn^{2+} in LLC-MK2 cells (excited wavelength at 405 nm, Zeiss LSM 510 META confocal microscope, ×20 objective lens) in D-MEM. (a) Bright-field transmission image of LLC-MK2 cells with NABQ (50 *µ*M). (b) Fluorescence image of NABQ-Zn2⁺ (25 *^µ*M) in LLC-MK2 cells and (c) after subsequent treatment with Hg²⁺ (50 μ M).

which was initially intense, eventually disappeared upon treatment of the cells with 1 equiv of Hg^{2+} (Figure 4c). Regarding this fluorescence quenching, intracellular Hg^{2+} could be detected at micromolar concentration levels (Figure S40).

In addition to LLC-MK2 cells, we also tested AMC-HN3, Hep-2, and MDCK cell lines and obtained similar results (Figures S34-S39). Hence, NABQ has potential as an agent for the intracellular imaging of Zn^{2+} and/or Hg^{2+} in living cells based on intracellular metal ion exchange.

To gain insight into the effect of NABQ and NABQ $-Zn^{2+}$ on Hg^{2+} cytotoxicity,¹⁶ we treated LLC-MK2 cells with Hg^{2+} , Hg^{2+} and NABQ, and Hg^{2+} and NABQ-Zn²⁺ (untreated cells were used as the control). The percentage of cell viability remaining after cell treatment was taken as a measure of toxicity and is shown in Figure S41. As expected, treatment with Hg^{2+} resulted in serious toxicity as shown by the 90% loss of cell viability after 1 day of cell incubation. Remarkably, cell viability increased to 50% for incubation with Hg^{2+} in the presence of NABQ and to 77% with Hg^{2+} in the presence of NABQ-Zn²⁺. It is notable that $NABQ-Zn^{2+}$ was more effective for the retention of cell viability in the presence of Hg^{2+} than NABQ alone. Thus

zinc is capable of controlling mercury distribution followed by protection from mercury toxicity, like metallothionein.¹⁷

We next determined if Hg^{2+} entrapped by NABQ during the metal ion exchange process in the cell is removed from the cell by performing emission spectroscopy on the supernatants of the cells treated with Hg^{2+} , NABQ-Zn²⁺, and Hg^{2+} and NABQ-Zn²⁺, respectively. As shown in Figure S42, in the absence of Hg^{2+} ions, the fluorescence intensity of the supernatants of cells treated with $NABQ-Zn^{2+}$ alone decreased moderately because delivery of $NABQ-Zn^{2+}$ into the cells resulted in a decline in its concentration in the supernatant. Importantly, in the presence of Hg^{2+} in the cells, the fluorescence of NABQ $-Zn^{2+}$ in the supernatant was quenched. This indicates that Hg^{2+} initially adsorbed by the cell was transported outside of the cell after metal ion exchange by formation of $NABQ-Hg^{2+}$.

To probe the intracellular metal ion exchange from NABQ-Zn²⁺ to NABQ-Hg⁺ followed by Hg²⁺ delivery outside of the cell, we carried out cell lyses of LLC-MK2 cells after treatment with Hg^{2+} , Hg^{2+} , and NABQ, and Hg^{2+} and $NABQ-Zn^{2+}$ (untreated cells were used as the control). The results are shown in Figure S43. NABQ $-Zn^{2+}$ was the most potent species for reducing the Hg^{2+} concentration in the cell (44% of control). Thus, treatment of Hg^{2+} -embedded cells with NABQ-Zn²⁺ expels Hg^{2+} from the cell, which is consistent with results reported by Rooney.17 The graphical abstract summarizes the dynamic metal ion exchange process of NABQ in the cell. In this model, NABQ acts as a dual sensitive metal ion exchanger for the supply of Zn^{2+} to the cell, as well as for extraction of Hg^{2+} .

In summary, we have presented in this study new fluorescent agents NABQ and NABQ $-Zn^{2+}$. With a fluorescence technique, NABO can be used for Zn^{2+} detection. Fluorescence of NABO $-Zn^{2+}$ is strongly quenched by Hg^{2+} with which the binding constant of NABO is greater than with Zn^{2+} . Confocal imaging shows that NABQ- Zn^{2+} can penetrate cells and engage in reciprocal metal ion exchange with Hg²⁺, resulting in the export of Hg²⁺ from the cells, which is confirmed by cell lyses experiments. This shows that NABO can act as a Zn^{2+} carrier and as a Hg^{2+} extracting agent in living cells, resulting in increased cell viability in the presence of toxic Hg^{2+} . The present observations provide a foundation for new fluorescence probes and target metal deliverer-based biological investigations.

Acknowledgment. This is supported by the KOSEF Grant funded by SRC (R11-2005-008-02001-0(2008)) and by a KRF grant (KRF-2008-C00426).

Supporting Information Available: Synthetic details, additional NMR, UV and emission spectral data, and biological test. This material is available free of charge via the Internet at http://pubs.acs.org.

OL801482N

^{(14) (}a) Pearson, A. J.; Xia, W. *J. Org. Chem.* **2003**, *68*, 5361. (b) Gunnlaugsson, T.; Davis, A. P.; O'Brien, J. E.; Glynn, M. *Org. Lett.* **2002**, *4*, 2449. (c) Vance, D. H.; Czarnik, A. W. *J. Am. Chem. Soc.* **1994**, *116*, 9397. (d) Kim, S. K.; Yoon, J. *Chem. Commun.* **2002**, 770.

⁽¹⁵⁾ Dulbecco, R.; Freeman, G. *Virology* **1959**, *8*, 396.

⁽¹⁶⁾ Cetin, Y.; Bullerman, L. B. *J. Agric. Food Chem.* **2005**, *53*, 6558.

⁽¹⁷⁾ Rooney, J. P. K. *Toxicology* **2007**, *234*, 145.